Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 265: 116073, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38169270

RESUMO

Blocking iron uptake and metabolism has been emerging as a promising therapeutic strategy for the development of novel antimicrobial compounds. Like all mycobacteria, M. abscessus (Mab) has evolved several countermeasures to scavenge iron from host carrier proteins, including the production of siderophores, which play a crucial role in these processes. In this study, we solved, for the first time, the crystal structure of Mab-SaS, the first enzyme involved in the biosynthesis of siderophores. Moreover, we screened a small, focused library and identified a compound exhibiting a potent inhibitory effect against Mab-SaS (IC50 ≈ 2 µM). Its binding mode was investigated by means of Induced Fit Docking simulations, performed on the crystal structure presented herein. Furthermore, cytotoxicity data and pharmacokinetic predictions revealed the safety and drug-likeness of this class of compounds. Finally, the crystallographic data were used to optimize the model for future virtual screening campaigns. Taken together, the findings of our study pave the way for the identification of potent Mab-SaS inhibitors, based on both established and unexplored chemotypes.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Salicilatos/farmacologia , Sideróforos/farmacologia , Ferro
2.
Eur J Med Chem ; 264: 115976, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039794

RESUMO

A series of novel benzothiozinone (BTZ) derivatives were designed, prepared and evaluated for antituberculosis activity. Specifically, the BTZ pharmacophore is retained and the previous heterocyclic ring linker is replaced by alkynyl or vinyl linker, the resulting compounds displayed about 5-fold improved antimycobacterial activity. We further revealed that the linker attached tail group affects the compound metabolic stability, potency and other drug like properties. This work led to the discovery of two compounds (A1 and A11) with acceptable low MICs and improved metabolic stability. The representative compound A11 demonstrated bactericidal efficacy in an acute TB infection mouse model.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Camundongos , Animais , Antituberculosos/química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686340

RESUMO

Human neutrophil elastase (HNE) is involved in SARS-CoV-2 virulence and plays a pivotal role in lung infection of patients infected by COVID-19. In healthy individuals, HNE activity is balanced by α1-antitrypsin (AAT). This is a 52 kDa glycoprotein, mainly produced and secreted by hepatocytes, that specifically inhibits HNE by blocking its activity through the formation of a stable complex (HNE-AAT) in which the two proteins are covalently bound. The lack of this complex, together with the detection of HNE activity in BALf/plasma samples of COVID-19 patients, leads us to hypothesize that potential functional deficiencies should necessarily be attributed to possible structural modifications of AAT. These could greatly diminish its ability to inhibit neutrophil elastase, thus reducing lung protection. The aim of this work was to explore the oxidation state of AAT in BALf/plasma samples from these patients so as to understand whether the deficient inhibitory activity of AAT was somehow related to possible conformational changes caused by the presence of abnormally oxidized residues.


Assuntos
COVID-19 , Elastase de Leucócito , Humanos , SARS-CoV-2 , Oxirredução , Transporte Biológico
4.
ACS Omega ; 8(28): 25209-25220, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483251

RESUMO

Treatment against tuberculosis can lead to the selection of drug-resistant Mycobacterium tuberculosis strains. To tackle this serious threat, new targets from M. tuberculosis are needed to develop novel effective drugs. In this work, we aimed to provide a possible workflow to validate new targets and inhibitors by combining genetic, in silico, and enzymological approaches. CanB is one of the three M. tuberculosis ß-carbonic anhydrases that catalyze the reversible reaction of CO2 hydration to form HCO3- and H+. To this end, we precisely demonstrated that CanB is essential for the survival of the pathogen in vitro by constructing conditional mutants. In addition, to search for CanB inhibitors, conditional canB mutants were also constructed using the Pip-ON system. By molecular docking and minimum inhibitory concentration assays, we selected three molecules that inhibit the growth in vitro of M. tuberculosis wild-type strain and canB conditional mutants, thus implementing a target-to-drug approach. The lead compound also showed a bactericidal activity by the time-killing assay. We further studied the interactions of these molecules with CanB using enzymatic assays and differential scanning fluorimetry thermal shift analysis. In conclusion, the compounds identified by the in silico screening proved to have a high affinity as CanB ligands endowed with antitubercular activity.

5.
Biomedicines ; 11(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509615

RESUMO

Tuberculosis (TB) is a leading infectious disease with serious antibiotic resistance. The benzothiazinone (BTZ) scaffold PBTZ169 kills Mycobacterium tuberculosis (Mtb) through the inhibition of the essential cell wall enzyme decaprenylphosphoryl-ß-D-ribose 2'-oxidase (DprE1). PBTZ169 shows anti-TB potential in animal models and pilot clinical tests. Although highly potent, the BTZ type DprE1 inhibitors in general show extremely low aqueous solubility, which adversely affects the drug-like properties. To improve the compounds physicochemical properties, we generated a series of BTZ analogues. Several optimized compounds had MIC values against Mtb lower than 0.01 µM. The representative compound 37 displays improved solubility and bioavailability compared to the lead compound. Additionally, compound 37 shows Mtb-killing ability in an acute infection mouse model.

6.
Vaccines (Basel) ; 11(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515037

RESUMO

Reverse vaccinology is a powerful tool that was recently used to develop vaccines starting from a pathogen genome. Some bacterial infections have the necessity to be prevented then treated. For example, individuals with chronic pulmonary diseases, such as Cystic Fibrosis, are prone to develop infections and biofilms in the thick mucus that covers their lungs, mainly caused by Burkholderia cepacia complex, Haemophilus influenzae, Mycobacterium abscessus complex, Pseudomonas aeruginosa and Staphylococcus aureus. These infections are complicated to treat and prevention remains the best strategy. Despite the availability of vaccines against some strains of those pathogens, it is necessary to improve the immunization of people with Cystic Fibrosis against all of them. An effective approach is to develop a broad-spectrum vaccine to utilize proteins that are well conserved across different species. In this context, reverse vaccinology, a method based on computational analysis of the genome of various microorganisms, appears as one of the most promising tools for the identification of putative targets for broad-spectrum vaccine development. This review provides an overview of the vaccines that are under development by reverse vaccinology against the aforementioned pathogens, as well as the progress made so far.

7.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047161

RESUMO

The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Bactérias , Descoberta de Drogas , Ferro
8.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902066

RESUMO

Mycobacterium abscessus is an opportunistic pathogen that mainly colonizes and infects cystic fibrosis patients' lungs. M. abscessus is naturally resistant to many antibiotics such as rifamycin, tetracyclines and ß-lactams. The current therapeutic regimens are not very effective and are mostly based on repurposed drugs used against Mycobacterium tuberculosis infections. Thus, new approaches and novel strategies are urgently needed. This review aims to provide an overview of the latest ongoing findings to fight M. abscessus infections by analyzing emerging and alternative treatments, novel drug delivery strategies, and innovative molecules.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Fibrose Cística/tratamento farmacológico , Antibacterianos/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , beta-Lactamas/farmacologia , Testes de Sensibilidade Microbiana
9.
Pharmaceutics ; 15(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36839823

RESUMO

Targeting pathogenic mechanisms, rather than essential processes, represents a very attractive approach for the development of new antimycobacterial drugs. In this context, iron acquisition routes have recently emerged as potentially druggable pathways. However, the importance of siderophore biosynthesis in the virulence and pathogenicity of M. abscessus (Mab) is still poorly understood. In this study, we investigated the Salicylate Synthase (SaS) of Mab as an innovative molecular target for the development of inhibitors of siderophore production. Notably, Mab-SaS does not have any counterpart in human cells, making it an interesting candidate for drug discovery. Starting from the analysis of the binding of a series of furan-based derivatives, previously identified by our group as inhibitors of MbtI from M. tuberculosis (Mtb), we successfully selected the lead compound 1, exhibiting a strong activity against Mab-SaS (IC50 ≈ 5 µM). Computational studies characterized the key interactions between 1 and the enzyme, highlighting the important roles of Y387, G421, and K207, the latter being one of the residues involved in the first step of the catalytic reaction. These results support the hypothesis that 5-phenylfuran-2-carboxylic acids are also a promising class of Mab-SaS inhibitors, paving the way for the optimization and rational design of more potent derivatives.

10.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36015139

RESUMO

Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of M. tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new anti-TB agents is the salicylate synthase MbtI, the first enzyme of the mycobacterial siderophore biochemical machinery, absent in human cells. In this work, a set of analogues of 5-(3-cyanophenyl)furan-2-carboxylic acid (I), the most potent MbtI inhibitor identified to date, was synthesized, characterized, and tested to further elucidate the structural requirements for achieving an efficient MbtI inhibition and potent antitubercular activity. The structure-activity relationships (SAR) discussed herein evidenced the importance of the side chain linked to the phenyl moiety to improve the in vitro antimycobacterial activity. In detail, 1f emerged as the most effective analogue against the pathogen, acting without cytotoxicity issues. To deepen the understanding of its mechanism of action, we established a fluorescence-based screening test to quantify the pathogen infectivity within host cells, using MPI-2 murine cells, a robust surrogate for alveolar macrophages. The set-up of the new assay demonstrates significant potential to accelerate the discovery of new anti-TB drugs.

11.
ACS Med Chem Lett ; 13(4): 593-598, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450361

RESUMO

The 6-trifluoro substituted 8-nitrobenzothiazinones (BTZs) represent a novel type of antitubercular agents, and their high antimycobacterial activity is related to the inhibition of decaprenylphosphoryl-ß-d-ribose 2'-oxidase (DprE1), an enzyme essential for the biosynthesis of mycobacterial cell wall. While extraordinary whole-cell activity was reported for the clinically advanced compound PBTZ169, its poor aqueous solubility signals the potential low bioavailability. To ameliorate the BTZ physiochemical property, a series of 6-methanesulfonyl substituted compounds were designed and prepared, and their antitubercular activity and DprE1 inhibition ability were evaluated. Among these compounds, MsPBTZ169 and compounds 2 and 8 exhibited minimum inhibitory concentrations (MICs) of less than 40 nM; moreover, these compounds displayed increased aqueous solubility and acceptable metabolic stability. Taken together, this study suggested that the 6-methanesulfonyl substituted 8-nitrobenzothiazinone derivatives, in combination with side chain modification, might provide BTZ type antitubercular agents with improved drug-like properties.

12.
Biochem Biophys Res Commun ; 607: 49-53, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35366543

RESUMO

Tuberculosis (TB) is one of the leading causes of death worldwide, due to a single pathogen, Mycobacterium tuberculosis. To eradicate TB, management of drug-resistant strains is fundamental, therefore, the identification and characterization of drug targets is pivotal. In this work we aim at describing the relationships with the well-known drug target DprE1 and DprE2, working in association for the biosynthesis of the arabinogalactan precursor, essential component of mycobacterial cell wall. We demonstrated that the enzymes behave as a stable heterodimeric complex, once co-expressed into the same system. This complex showed improved catalytic properties, compared to the singularly expressed enzymes, demonstrating that co-expression is fundamental to achieve the proper folding of the active sites. Our results represent an important step forward in deciphering the functional properties of these enzymes, and lay the foundations for structural studies, useful for development of more specific inhibitors helpful to contrast the spreading of drug-resistant strains.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Humanos , Racemases e Epimerases , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
13.
Eur J Med Chem ; 234: 114235, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35286928

RESUMO

Mycobacterial resistance is a rapidly increasing phenomenon requiring the identification of new drugs effective against multidrug-resistant pathogens. The inhibition of protein tyrosine phosphatase B (MptpB), which interferes with host immune responses, may provide a new strategy to fight tuberculosis (TB), while preventing cross-resistance issues. On this basis, starting from a virtual screening (VS) campaign and subsequent structure elucidation studies guided by X-ray analyses, an unexpected γ-lactone derivative (compound 1) with a significant enzymatic activity against MptpB was identified. The structural characterization of compound 1 was described by means of NMR spectroscopy, HRMS, single crystal X-ray diffraction and Hirshfeld surface analysis, allowing a detailed conformational investigation. Notably, the HPLC separation of (±)-1 led to the isolation of the most active isomer, which emerged as a very promising MptpB inhibitor, with an IC50 value of 31.1 µM. Overall, the new chemotype described herein might serve as a basis for the development of novel treatments against TB infections.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias , Inibidores Enzimáticos/farmacologia , Humanos , Lactonas/farmacologia , Tuberculose/prevenção & controle
14.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054958

RESUMO

Avermectins are macrocyclic lactones with anthelmintic activity. Recently, they were found to be effective against Mycobacterium tuberculosis, which accounts for one third of the worldwide deaths from antimicrobial resistance. However, their anti-mycobacterial mode of action remains to be elucidated. The activity of selamectin was determined against a panel of M. tuberculosis mutants. Two strains carrying mutations in DprE1, the decaprenylphosphoryl-ß-D-ribose oxidase involved in the synthesis of mycobacterial arabinogalactan, were more susceptible to selamectin. Biochemical assays against the Mycobacterium smegmatis DprE1 protein confirmed this finding, and docking studies predicted a binding site in a loop that included Leu275. Sequence alignment revealed variants in this position among mycobacterial species, with the size and hydrophobicity of the residue correlating with their MIC values; M. smegmatis DprE1 variants carrying these point mutations validated the docking predictions. However, the correlation was not confirmed when M. smegmatis mutant strains were constructed and MIC phenotypic assays performed. Likewise, metabolic labeling of selamectin-treated M. smegmatis and M. tuberculosis cells with 14C-labeled acetate did not reveal the expected lipid profile associated with DprE1 inhibition. Together, our results confirm the in vitro interactions of selamectin and DprE1 but suggest that selamectin could be a multi-target anti-mycobacterial compound.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Antiparasitários/farmacologia , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ivermectina/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ivermectina/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Relação Estrutura-Atividade
15.
J Med Chem ; 64(19): 14526-14539, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34609861

RESUMO

The benzothiazinone (BTZ) scaffold compound PBTZ169 kills Mycobacterium tuberculosis by inhibiting the essential flavoenzyme DprE1, consequently blocking the synthesis of the cell wall component arabinans. While extraordinarily potent against M. tuberculosis with a minimum inhibitory concentration (MIC) less than 0.2 ng/mL, its low aqueous solubility and bioavailability issues need to be addressed. Here, we designed and synthesized a series of 6-methanesulfonyl substituted BTZ analogues; further exploration introduced five-member aromatic heterocycles as linkers to attach an aryl group as the side chain. Our work led to the discovery of a number of BTZ derived compounds with potent antitubercular activity. The optimized compounds 6 and 38 exhibited MIC 47 and 30 nM, respectively. Compared to PBTZ169, both compounds displayed increased aqueous solubility and higher stability in human liver microsomes. This study suggested that an alternative side-chain modification strategy could be implemented to improve the druglike properties of the BTZ-based compounds.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668554

RESUMO

Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of Mycobacterium tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new antitubercular agents is the salicylate synthase MbtI, an essential enzyme for the mycobacterial siderophore biochemical machinery, absent in human cells. A set of analogues of I and II, two of the most potent MbtI inhibitors identified to date, was synthesized, characterized, and tested to elucidate the structural requirements for achieving an efficient MbtI inhibition and a potent antitubercular activity with this class of compounds. The structure-activity relationships (SAR) here discussed evidenced the importance of the furan as part of the pharmacophore and led to the preparation of six new compounds (IV-IX), which gave us the opportunity to examine a hitherto unexplored position of the phenyl ring. Among them emerged 5-(3-cyano-5-(trifluoromethyl)phenyl)furan-2-carboxylic acid (IV), endowed with comparable inhibitory properties to the previous leads, but a better antitubercular activity, which is a key issue in MbtI inhibitor research. Therefore, compound IV offers promising prospects for future studies on the development of novel agents against mycobacterial infections.

17.
J Med Chem ; 63(13): 7066-7080, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32530281

RESUMO

The Mg2+-dependent Mycobacterium tuberculosis salicylate synthase (MbtI) is a key enzyme involved in the biosynthesis of siderophores. Because iron is essential for the survival and pathogenicity of the microorganism, this protein constitutes an attractive target for antitubercular therapy, also considering the absence of homologous enzymes in mammals. An extension of the structure-activity relationships of our furan-based candidates allowed us to disclose the most potent competitive inhibitor known to date (10, Ki = 4 µM), which also proved effective on mycobacterial cultures. By structural studies, we characterized its unexpected Mg2+-independent binding mode. We also investigated the role of the Mg2+ cofactor in catalysis, analyzing the first crystal structure of the MbtI-Mg2+-salicylate ternary complex. Overall, these results pave the way for the development of novel antituberculars through the rational design of improved MbtI inhibitors.


Assuntos
Desenho de Fármacos , Liases/química , Liases/metabolismo , Magnésio/metabolismo , Mycobacterium tuberculosis/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
18.
Molecules ; 25(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182964

RESUMO

Tuberculosis is still an urgent global health problem, mainly due to the spread of multi-drug resistant M. tuberculosis strains, which lead to the need of new more efficient drugs. A strategy to overcome the problem of the resistance insurgence could be the polypharmacology approach, to develop single molecules that act on different targets. Polypharmacology could have features that make it an approach more effective than the classical polypharmacy, in which different drugs with high affinity for one target are taken together. Firstly, for a compound that has multiple targets, the probability of development of resistance should be considerably reduced. Moreover, such compounds should have higher efficacy, and could show synergic effects. Lastly, the use of a single molecule should be conceivably associated with a lower risk of side effects, and problems of drug-drug interaction. Indeed, the multitargeting approach for the development of novel antitubercular drugs have gained great interest in recent years. This review article aims to provide an overview of the most recent and promising multitargeting antitubercular drug candidates.


Assuntos
Antituberculosos/uso terapêutico , Terapia de Alvo Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/química , Desenho de Fármacos , Humanos , Mycobacterium tuberculosis/patogenicidade , Polifarmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
19.
J Enzyme Inhib Med Chem ; 34(1): 823-828, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30889995

RESUMO

Starting from the analysis of the hypothetical binding mode of our previous furan-based hit (I), we successfully achieved our objective to replace the nitro moiety, leading to the disclosure of a new lead exhibiting a strong activity against MbtI. Our best candidate 1 h displayed a Ki of 8.8 µM and its antimycobacterial activity (MIC99 = 250 µM) is conceivably related to mycobactin biosynthesis inhibition. These results support the hypothesis that 5-phenylfuran-2-carboxylic derivatives are a promising class of MbtI inhibitors.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Furanos/química , Liases/antagonistas & inibidores , Sítios de Ligação , Inibidores Enzimáticos/química , Liases/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium bovis/efeitos dos fármacos , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 155: 754-763, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29940465

RESUMO

We report on the virtual screening, synthesis, and biological evaluation of new furan derivatives targeting Mycobacterium tuberculosis salicylate synthase (MbtI). A receptor-based virtual screening procedure was applied to screen the Enamine database, identifying two compounds, I and III, endowed with a good enzyme inhibitory activity. Considering the most active compound I as starting point for the development of novel MbtI inhibitors, we obtained new derivatives based on the furan scaffold. Among the SAR performed on this class, compound 1a emerged as the most potent MbtI inhibitor reported to date (Ki = 5.3 µM). Moreover, compound 1a showed a promising antimycobacterial activity (MIC99 = 156 µM), which is conceivably related to mycobactin biosynthesis inhibition.


Assuntos
Antituberculosos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Liases/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Liases/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...